Next: Finding Roots, Up: Polynomial Manipulations [Contents][Index]
The value of a polynomial represented by the vector c can be evaluated at the point x very easily, as the following example shows:
N = length (c) - 1; val = dot (x.^(N:-1:0), c);
While the above example shows how easy it is to compute the value of a
polynomial, it isn’t the most stable algorithm. With larger polynomials
you should use more elegant algorithms, such as Horner’s Method, which
is exactly what the Octave function polyval
does.
In the case where x is a square matrix, the polynomial given by
c is still well-defined. As when x is a scalar the obvious
implementation is easily expressed in Octave, but also in this case
more elegant algorithms perform better. The polyvalm
function
provides such an algorithm.
Evaluate the polynomial p at the specified values of x. When mu is present, evaluate the polynomial for (x-mu(1))/mu(2). If x is a vector or matrix, the polynomial is evaluated for each of the elements of x.
In addition to evaluating the polynomial, the second output
represents the prediction interval, y +/- dy, which
contains at least 50% of the future predictions. To calculate the
prediction interval, the structured variable s, originating
from polyfit
, must be supplied.
See also: polyvalm, polyaffine, polyfit, roots, poly.
Evaluate a polynomial in the matrix sense.
polyvalm (c, x)
will evaluate the polynomial in the
matrix sense, i.e., matrix multiplication is used instead of element by
element multiplication as used in polyval
.
The argument x must be a square matrix.
Next: Finding Roots, Up: Polynomial Manipulations [Contents][Index]